Towards Practical Facial Feature Detection

نویسندگان

  • Micah Eckhardt
  • Ian R. Fasel
  • Javier R. Movellan
چکیده

Localizing facial features is a critical component in many computer vision applications such as expression recognition, face recognition, face tracking, animation, and red-eye correction. Practical applications require detectors that operate reliably under a wide range of conditions, including variations in illumination, pose, ethnicity, gender and age. One challenge for the development of such detectors is the inherent trade-off between robustness and precision. Robust detectors tend to provide poor localization and detectors sensitive to small changes in local structure, which are needed for precise localization, generate a large number of false alarms. Here we present an approach to this trade-off based on context dependent inference. First, robust detectors are used to detect contexts in which target features occur, then precise detectors are trained to localize the features given the detected context. This paper describes the approach and presents a thorough empirical examination of the parameters needed to achieve practical levels of performance, including the size of the training database, size of the detector’s receptive fields and methods for information integration. The approach operates in real time and achieves, to our knowledge, the most accurate localization performance to date.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial Feature Addition and Alteration

While face and facial feature detection is an important and popular problem in image processing and algorithm development, the work presented here is far less important. Here I attempt to build on existing methods of face detection and facial feature detection in order to automate and customize an old practical joke where one scribbles facial hair onto a picture of friends, celebrities, or even...

متن کامل

Towards a dynamic expression recognition system under facial occlusion

Facial occlusion is a challenging research topic in facial expression recognition (FER). This has resulted in the need to develop some interesting facial representations and occlusion detection methods in order to extend the FER to uncontrolled environments. It should be noted that most of the previous work focuses on these two issues separately, and on static images. We are thus motivated to p...

متن کامل

Face Detection and Recognition

Two of the most important aspects in the general research framework of face recognition by computer are addressed here: face and facial feature detection, and face recognition -or rather face comparison. The best reported results of the mug-shot face recognition problem are obtained with elastic matching using jets. In this approach, the overall face detection, facial feature localization, and ...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009